SUBJECT INDEX

phosphorylation system. I. Resistance of a phosphorylating system of submito-chondrial particles to trypsin, due to phosphorylation of —— (Luzikof et al.) (253) 46 F-Actin Effect of temperature on interaction between —— and tropomyosin (Tanaka, Oosawa) (253) 274 α-Actinin Effect of —— on actin viscosity (Holmes et al.) (253) 240 Actin viscosity Effect of α-actinin on —— (Holmes, et al.) (253) 240 Spectrophotometric measurements of metabolic reponses in isolated rat —— (Cummins, Bull) (253) 29 Chlorophyll a/chlorophyll b ratios Sensitive fluorescence method for the determination of —— (Boardman, Thorne) (253) 222 Chlorophyll-protein complexes Photosystem I and II —— of higher plant chloroplasts (Kung, Thornber) (253) 285 Chloroplasts Effect of α-actinin on —— (Holmes, et al.) (253) 240
F-Actin Effect of temperature on interaction between — and tropomyosin (Tanaka, Oosawa) (253) 274 α-Actinin Effect of — on actin viscosity (Holmes et al.) (253) 240 Actin viscosity Effect of α-actinin on — (Holmes, et al.) (253) 240 Sensitive fluorescence method for the determination of — (Boardman, Thorne) (253) 222 Chlorophyll-protein complexes Photosystem I and II — of higher plant chloroplasts (Kung, Thornber) (253) 285 Chloroplasts Effect of μοα-actinin on — (Holmes, et al.) (253) 240 Effects of lipase on spinach and Chlamydomonas — (Okayama et al.) (253) 476
between —— and tropomyosin (Tanaka, Oosawa) (253) 274 α-Actinin Effect of —— on actin viscosity (Holmes et al.) (253) 240 Actin viscosity Effect of α-actinin on —— (Holmes, et al.) (253) 240 (253) 240 (253) 222 Chlorophyll-protein complexes Photosystem I and II —— of higher plant chloroplasts (Kung, Thornber) (253) 285 Chloroplasts Effect of α-actinin on —— (Holmes, et al.) (253) 240 (Okayama et al.) (253) 476
 α-Actinin Effect of — on actin viscosity (Holmes et al.) (253) 240 Actin viscosity Effect of α-actinin on — (Holmes, et al.) (253) 240 Photosystem I and II — of higher plant chloroplasts (Kung, Thornber) (253) 285 Chloroplasts Effects of lipase on spinach and Chlamydomonas — (Okayama et al.) (253) 476
et al.) (253) 240 Actin viscosity Effect of α-actinin on ——— (Holmes, et al.) (253) 240 285 Chloroplasts Effects of lipase on spinach and Chlamy-domonas ———— (Okayama et al.) (253) 476
Effect of α-actinin on ——— (Holmes, et al.) (253) 240 Effects of lipase on spinach and Chlamy-domonas ——— (Okayama et al.) (253) 476
et al.) (253) 240 domonas ——— (Okayama et al.) (253) 476
Aerobiosis Chloroplasts
Redox environment and microbial physiol- Photosystem I and II chlorophyll-protein
ogy. I. The transition from anaerobiosis complexes of higher plant (Kung,
to —— in continuous cultures of facul— Thornber) (253) 285
tative anaerobes (Wimpenny, Necklen) Chloroplast fragments
(253) 352 Photosystem II activity of ———————————————————————————————————
Induction of ——— in a mitochondrial Chloroplast grana
fraction (Horton) (253) 514 Action spectra of Photosystem I and Photo-
Anaerobiosis system II in spinach ——— and stroma
Redox environment and microbial physiollamellae (Sane, Park) (253) 208
ogy. I. The transition from ——— to Chloroplast structural proteins
aerobiosis in continuous cultures of facultative anaerobes (Wimpenny, Necklen) Physico chemical study of ———————————————————————————————————
(253) 352 Chromaffin granules
Anabaena cylindrica Cytochrome b ₅₆₁ of the bovine adrenal
Physiological electron donor systems to ———. A high potential b-type cytochrome
the nitrogenase of the blue-green alga (Flatmark, Terland) (235) 487
(Smith et al.) (253) 104 Chromatium ATPase Iron-containing proteins in ———. II.
Synthesis of 2-(dansylamino) ethyl triphos- Purification and properties of cholate-
phate and its properties as a fluorescent solubilized cytochrome complex (Kennel,
substrate of heavy meromyosin ——— Kamen) (253) 153 (Onodera, Yagi) (253) 254 Chromatium
ATP-synthesizing enzyme Thermodynamics of the primary and secon-
Photosynthetic phosphorylation in Chlamy- dary photochemical reactions in ———
domonas reinhardi: Effects of a mutation (Case, Parson) (253) 187
altering an ———. (Saro et al.) (253) 437 Chromatium D
Azotobacter vinelandii Photosynthetic reaction center transients,
Two-iron ferredoxins in spinach, parsley, pig adrenal cortex, —— and Clostridium P435 and P424, in —— (Seibert, DeVault) (253) 396
pasteurianum: Studies by magnetic field Clostridium pasteurianum
Mössbauer spectroscopy (Dunham et al.) Two-iron ferredoxins in spinach, parsley,
(253) 134 pig adrenal cortex, Azotobacter vinelandii,
Bacteriochlorophyll and ———: Studies by magnetic field Appropriate and property transfer behaviour of Möschauer spectroscopy (Duphem et al.)
Anomalous energy transfer behaviour of light absorbed by ——— in several photo- (253) 134
synthetic bacteria (Ebrey) (253) 385 Crithidia fasciculata
Brain cortex Purification and properties of cytochrome
Spectral changes in respiratory interme- c ₅₅₅ from a protozoan, — (Hill et al.)
diates of ——— in response to depolarizing (253) 78

496 SUBJECT INDEX

Cytochrome b Properties of three — like species in	Energy transfer Anomalous —— behaviour of light
mitochondria and sub mitochondrial par- ticles (Wikström) (253) 332 Cytochromes b	absorbed by bacteriochlorophyll in several photosynthetic bacteria (Ebrey) (253) 385 Fatty acids
Spectral properties of the ———— in intact mitochondria (Sato et al.) (253) 88 Cytochrome b_5 reductase	Inhibition of α-oxobutyrate utilization by ————————————————————————————————————
A high molecular weight form of NADH————————————————————————————————————	Fatty acid oxidation ————————————————————————————————————
Cytochrome b ₅₆₁ of the bovine adrenal chromaffin	Pritchard) (253) 12 Ferredoxins
granules. A high potential b-type cyto- chrome (Flatmark, Terland) (253) 487 Cytochromes c	Iron electron-nuclear double resonance (ENDOR) of two-iron ——— from spinach, parsley, pig adrenal cortex and Pseudomonas
Structural studies of modified by muclear magnetic resonance spectroscopy (Wüthrich et al.) (253) 98	putida (Fritz et al.) (253) 110 Ferredoxins Structure of the iron-sulphur complex in
Cytochrome C-550 Destruction of ——— by ultraviolet radiation (Erixon, Butler) (253) 483	the two-iron ———. (Dunham et al.) (253) 373 Ferredoxins
Cytochrome c ₅₅₅ Purification and properties of ——— from	Two-iron ——— in spinach, parsley, pig adrenal cortex, Azotobacter vinelandii, and
a protozoan, Crithidia fasciculata (Hill et al.) (253) 78 Cytochrome complex	Clostridium pasteurianum: Studies by magnetic field Mössbauer spectroscopy (Dunham et al.) (253) 134
Iron-containing proteins in Chromatium. II. Purification and properties of cholate-solubilized———(Kennel, Kamen) (253) 153	Effect of isotopic substitution on the elec- spin resonance spectra of ——— and flavo-
Cytochrome f Light driven redox changes of ——— and the development of Photosystems I and II	protein free radicals (Crespi et al.) (253) 509 Flavoprotein Effect of isotopic substitution on the elec-
during greening of bean leaves (Hiller, Boardman) (253) 449 2-(Dansylamino) ethyl triphosphate	tron spin resonance spectra of flavin and —— free radicals (Crespi et al.) (253) 509 Fluorescence
Synthesis of ——— and its properties as a fluorescent substrate of heavy meromyosin-	Distribution of variable ——— among subchloroplast fractions (Park et al.) (253)
ATPase (Onodera, Yagi) (253) 254 1,5-Diphenylcarbazone Disproportionation of ———. A new reac-	Fluorescence method Sensitive ———— for the determination of
tion catalysed by Photosystem I (Shneyou, Avron) (253) 412 Electron carriers	chlorophyll a/chlorophyll b ratios (Boardman, Thorne) (253) 222 Greening
Pathways of intracellular hydrogen transport in the Walker carcinosarcoma 256. II. Observations on oxidoreduction changes of	Light driven redox changes of cytochrome f and the development of Photosystems I and II during ——— of bean leaves
———— in slices (Cittadini et al.) (253) 314 Electron donor Physiological —————————— systems to the nitro-	(Hiller, Boardman) (253) 449 Greening ——————————————————————————————————
genase of the blue-green alga Anabaena cylindrica (Smith et al.) (253) 104 Electron-nuclear double resonance	tiple light/dark step photoconversion pro- cesses (Thorne) (253) 459 Haemoproteins
Iron ——— (ENDOR) of two-iron ferre- doxins from spinach, parsley, pig adrenal cortex and Pseudomonas putida (Fritz et	Electron paramagnetic resonance (EPR) studies on the nature of ———————————————————————————————————
al.) (253) 110 Electron transport Pathways of intracellular hydrogen transport in the Waller consincers are I	(253) 290 Hydrogen transport Pathways of intracellular ——— in the
port in the Walker carcinosarcoma 256. I. The intramitochondrial ————————————————————————————————————	Walker carcinosarcoma 256. I. The intramitochondrial electron transport and the translocation of reducing equivalents across the mitochondrial morphrane (Calcati
the mitochondrial membrane (Galeotti et al.) (253) 303	the mitochondrial membrane (Galeotti et al) (253) 303

Hydrogen transport	fatty acids in rat liver ——— (Ciman et al.)
Pathways of intracellular — in the	(253) 24
Walker carcinosarcoma 256. II. Obser-	Mitochondria
vations on oxidoreduction changes of	Oxidative phosphorylation in Moniezia
electron carriers in slices (Cittadini et al.)	muscle ——— (Cheah) (253) 1
(253) 314	Mitochondria
β -Hydroxyethyl-2,4-dinitrophenyl disulphide	Properties of three cytochrome b-like
Characteristics of myosin modified by	species in ——— and sub mitochondrial
- in the presence of pyrophosphate	particles (Wikström) (253) 332
(Kakol) (253) 266	Mitochondria
Hydroxylamine	Spectral properties of the b cytochromes
Action of ——— in the red alga Porphyri-	in intact —— (Sato et al.) (253) 88
dium cruentum (Mohanty, et al.) (253) 213	Mitochondrial membrane
Iron	Pathways of intracellular hydrogen trans-
electron-nuclear double resonance	port in the Walker carcinosarcoma 256.
(ENDOR) of two-iron ferredoxins from	I. The intramitochondrial electron transport
spinach, parsley, pig adrenal cortex and	and the translocation of reducing equiva-
Pseudomonas putida (Fritz et al.) (253) 110	lents across the ——— (Galeotti et al.)
	, ,
Iron-sulphur complex	(253) 303 Mitoshandrial respiratory chain proteins
Structure of the ——— in the two-iron	Mitochondrial respiratory chain proteins
ferredoxins (Dunham et al.) (253) 373	Changes in ——— during perinatal devel-
Lipase	opment. Evidence of the importance of
Effects of ——— on spinach and Chlamy-	environmental oxygen tension (Hallman)
domonas chloroplasts (Okayama et al.)	(253) 360
(253) 476	Molybdenum
Manganese	Electron paramagnetic resonance of ———
Photoactivation of the ——— catalyst of	in rat liver and in rat liver mitochondria
oxygen evolution. I. Biochemical and kinet-	(Peisach et al.) (253) 58
ic aspects (Cheniae, Martin) (253) 167	Myosin
Manganese	Characteristics of ——— modified by β -
Photoactivation of the ——— catalyst of	hydroxyethyl-2,4-dinitrophenyl disulphide
oxygen evolution II. A two-quantum	in the presence of pyrophosphate (Kakol)
mechanism (Radmer, Cheniae) (253) 182	(253) 266
Membrane	NADH-cytochrome b_5 reductase
Freeze-fracture faces of inner and outer	High molecular weight form of — from
- of mitochondria (Melnick, Packer)	ox liver microsomes (Panfili et al.) (253) 323
(253) 503	Nitrite and nitric oxide reduction
Meromyosin-ATPase	Electron paramagnetic resonance (EPR)
Synthesis of 2-(dansylamino) ethyl triphos-	studies on the nature of haemoproteins in
phate and its properties as a fluorescent	——— (Cox Jr. et al.) (253) 290
substrate of heavy ——— (Onodera, Yagi)	Nitric oxide reduction
(253) 254	Electron paramagnetic resonance (EPR)
Metabolic responses	studies on the nature of haemoproteins in
Spectrophotometric measurements of ———	nitrite and ——— (Cox Jr. et al.) (253) 290
in isolated rat brain cortex (Cummins,	Nitrogenase
Bull) (253) 29	Compatibility of the components of ———
Microsomes	from soybean bacteroids and free-living
	nitrogen-fixing bacteria (Murphy, Koch)
A high molecular weight form of NADH-	
cytochrome b ₅ reductase from ox liver	(253) 295
——— (Panfili et al.) (253) 323	Nitrogenase
Mitochondria	Physiological electron donor system to the
Electron paramagnetic resonance of molyb-	——— of the blue-green alga Anabaena
denum in rat liver and in rat liver ———	cylindrica (Smith et al.) (253) 104
(Peisach et al.) (253) 58	Nitrogen-fixing bacteria
Mitochondria	Compatibility of the components of nitro-
Fatty acid oxidation in ——— isolated	genase from soybean bacteroids and free-
from rat submandibular salivary glands	living ——— (Murphy, Koch) (253) 295
	Oxidative metabolism
(Horak, Pritchard) (253) 12	
Mitochondria	Effect of aggregating agents on ——— of
Freeze-fracture faces of inner and outer	rabbit platelets (McElroy et al.) (253) 64
membranes of ——— (Melnick, Packer)	Oxidative phosphorylation
(253) 503	in Moniezia muscle mitochondria
Mitochondria	(Cheah) (253) I
Inhibition of α -oxobutyrate utilization by	Oxidative phosphorylation

Studies on the stabilization of an ——	in spinach chloroplast grana and stroma
system. I. Resistance of a phosphorylating	lamellae (Sane, Park) (253) 208
system of submitochondrial particles to	Photosystem II
trypsin, due to phosphorylation of ADP	Trypsin inhibition of (Selman,
(Luzikof et al.) (253) 46	Bannister) (253) 428
α-Oxobutyrate	Photosystem II activity
Inhibition of ——— utilization by fatty	of chloroplast fragments lacking
acids in rat liver mitochondria (Ciman et	
- 1	P700 (Malkin) (253) 421 Platelets
al.) (253) 24	
Oxygen evolution	Effect of aggregating agents on oxidative
Flash activation kinetics and photosynthetic	metabolism of rabbit ——— (Mc Elroy
unit size for ——— using 3-nsec light	et al.) (253) 64
flashes (Weiss Jr. et al.) (253) 298	Porphyridium cruentum
Oxygen evolution	Action of hydroxylamine in the red alga
Photoactivation of the manganese catalyst	——— (Mohanty et al.) (253) 213
of ———. I. Biochemical and kinetic aspects	Proteins
(Cheniae, Martin) (253) 167	Physico chemical study of chloroplast
Oxygen evolution	structural — from Zea mays L.
Photoactivation of the manganese catalyst	(Lagoutte, Duranton) (253) 232
of ———. II. A two-quantum mechanism	Pseudomonas putida
(Radmer, Cheniae) (253) 182	Iron electron-nuclear double resonance
Photochemical reactions	
	(ENDOR) of two-iron ferredoxins from
Thermodynamics of the primary and	spinach, parsley, pig adrenal cortex and
secondary —— in Chromatium (Case,	(Fritz et al.) (253) 110
Parson) (253) 187	Respiratory chain proteins
Photoconversion processes	Changes in mitochondrial ——— during
Greening of etiolated bean leaves. III.	perinatal development. Evidence of the
Multiple light/dark step ——— (Thorne)	importance of environmental oxygen ten-
(253) 459	sion (Hallman) (253) 360
Photosynthetic unit	Redox environment
Flash activation kinetics and ——— size	and microbial physiology. I. The
for oxygen evolution using 3-nsec light	transition from anaerobiosis to aerobiosis
flashes (Weiss Jr. et al.) (253) 298	in continuous cultures of facultative anae-
Photosynthetic bacteria	robes (Wimpenny, Necklen) (253) 352
Anomalous energy transfer behaviour of	Respiratory intermediates
light absorbed by bacteriochlorophyll in	Spectral changes in ——— of brain cortex
several ——— (Ebrey et al.) (253) 385	in response to depolarizing pulses (Cummins)
Photosynthetic phosphorylation	(253) 39
in Chlamydomonas reinhardi: Effect	Subchloroplast fractions
of a mutation altering an ATP-synthesizing	Distribution of variable fluorescence among
enzyme (Sato et al.) (253) 437	(Park et al.) (253) 204
Photosynthetic reaction center	Succinate dehydrogenase
transients, P435 and P424, in	Magnetic susceptibility of ——: The
Chromatium D (Seibert, DeVault) (253)	4-iron preparation (Hollocher, Ehrenberg)
396	(253) 346
Photosystem I	Submitochondrial particles
Action spectra of ——— and Photosystem	Studies on the stabilization of an oxidative
II in spinach chloroplast grana and stroma	phosphorylation system. I. Resistance of
lamellae (Sane, Park) (253) 208	a phosphorylating system of ——— to
Photosystem I	trypsin, due to phosphorylation of ADP
Disproportionation of 1,5-diphenylcarba-	(Luzikof et al.) (253) 46
zone. A new reaction catalysed by ———.	Stroma lamellae
(Shneyour, Avron) (253) 412	Action spectra of Photosystem I and Photo-
Photosystem I and II	system II in spinach chloroplast grana
chlorophyll-protein complexes of	and ——— (Sane, Park) (253) 208
higher plant chloroplasts (Kung, Thornber)	Structural proteins
(253) 285	Physico chemical study of chloroplast
Photosystems I and II	from Zea mays L. (Lagoutte
Light driven resox changes of cytochrome	Duranton) (253) 232
f and the development of ——— during	Tropomyosin
greening of bean leaves (Hiller, Boardman)	Effect of tempearture on interaction be-
(253) 449	tween F-actin and ——— (Tanaka, Oosawa)
Photosystem II	(253) 274
Action spectra of photosystem I and ———	(~33) ~/4